Code: EE5T6

III B.Tech - I Semester – Regular/Supplementary Examinations March - 2021

LINEAR AND DIGITAL INTEGRATED CIRCUIT APPLICATIONS

(ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks

 $11 \times 2 = 22 \text{ M}$

1.

- a) Brief the importance of CMRR and Slew rate of op-amp.
- b) Draw the circuit to generate sine wave for input cosine wave using op-amp.
- c) Discuss the Barkhausen criterion for oscillations with example.
- d) Write the formula of output of inverting summer using op-amp.
- e) Describe the working of Voltage controlled oscillator in communications systems.
- f) Define the capture and lock range of PLL.
- g) Illustrate the design procedure of combinational circuits.
- h) Perform the conversions i) $(12345)_8=()_{12}$,
 - ii) $(5459)_{10} = ()_7$
- i) Compare and contrast latch and Flip-flop.
- j) Design mod 4 counter.
- k) Design 4bit adder unit.

PART - B

Answer any <i>THREE</i> questions. All questions carry equal mark $3 \times 16 = 48$	
2. a) Derive the inverting and non inverting gains of an op-a and describe its block diagram.	mp 8 M
b) Design a circuit using op-amp to generate an output $Vo = sin(2at)$ for the input signal $cos(at)$.	8 M
3. a) Design a Square and Triangular wave generator for inp sine wave.	out 8 M
b) Design a wide band-pass filter with fH=200Hz, fL=1K and a pass-band gain=4. Draw the frequency response a calculate Q factor for the filter.	
4. a) Draw the circuit diagram of IC555 astable multivibrato and explain.	or 8 M
b) Illustrate the block schematic of PLL in detail.	8 M
5. a) Implement the 16 input to 4 output priority encoder.	8 M
b) Design a 4×4 combinational multiplier.	8 M
6. a) Draw the logic diagram of universal shift register and explain its operation.	8 M
b) Design a 4bit up counter.	8 M