Code: EE5T6
III B.Tech - I Semester - Regular/Supplementary Examinations March - 2021

LINEAR AND DIGITAL INTEGRATED CIRCUIT APPLICATIONS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Brief the importance of CMRR and Slew rate of op-amp.
b) Draw the circuit to generate sine wave for input cosine wave using op-amp.
c) Discuss the Barkhausen criterion for oscillations with example.
d) Write the formula of output of inverting summer using op-amp.
e) Describe the working of Voltage controlled oscillator in communications systems.
f) Define the capture and lock range of PLL.
g) Illustrate the design procedure of combinational circuits.
h) Perform the conversions i) $(12345)_{8}=()_{12}$,
ii) $(5459)_{10}=()_{7}$
i) Compare and contrast latch and Flip-flop.
j) Design mod 4 counter.
k) Design 4bit adder unit.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Derive the inverting and non inverting gains of an op-amp and describe its block diagram.
b) Design a circuit using op-amp to generate an output $V o=\sin (2 a t)$ for the input signal $\cos (a t)$.
3. a) Design a Square and Triangular wave generator for input
sine wave. 8 M
b) Design a wide band-pass filter with $\mathrm{fH}=200 \mathrm{~Hz}, \mathrm{fL}=1 \mathrm{KHz}$ and a pass-band gain=4. Draw the frequency response and calculate Q factor for the filter.
4. a) Draw the circuit diagram of IC555 astable multivibrator and explain.
b) Illustrate the block schematic of PLL in detail. 8 M
5. a) Implement the 16 input to 4 output priority encoder. 8 M
b) Design a 4×4 combinational multiplier. 8 M
6. a) Draw the logic diagram of universal shift register and explain its operation.
b) Design a 4bit up counter. 8 M
